tailed chemical investigation of the resulting dodecahedranes.
Acknowledgment. This research was made possible by the generous financial support of the National Institutes of Health (Grant AI-11490). Special thanks go to Dr. A. Rosan (Allied Corporation) for helpful advice and several zerovalent titanium samples. The $500-\mathrm{MHz}$ NMR and mass spectra were recorded by Dr. C. Cottrell and C. Weisenberger, respectively, at The Ohio State University Campus Instrumentation Center.

Reactive Cationic Dicyclopentadienylzirconium(IV) Complexes

Richard F. Jordan, ${ }^{*}$ William E. Dasher, ${ }^{\dagger}$ and Scott F. Echols

Department of Chemistry, Washington State University Pullman, Washington 99164

Received November 4, 1985

Electron deficient early-transition-metal complexes are highly reactive with a variety of small molecules and organic substrates as exemplified by the now classic studies of dicyclopentadienylzirconium(IV) and -titanium(IV) compounds. ${ }^{1}$ Attempts to extend this chemistry by increasing the electrophilicity of the metal center have involved replacement of ($6-\mathrm{e}^{-}$donor) cyclopentadienyl ligands with $2-e^{-}$donor ligands as well as investigation of related dicyclopentadienyl compounds of group III (3), ${ }^{25}$ lanthanide, and actinide metals. ${ }^{1 i}$ Notable recent work includes the alkylation of carbonyl compounds by $\mathrm{TiR}_{n} \mathrm{X}_{4-n}{ }^{2}$ the complete scission of CO by CpZrCl (diene), ${ }^{3}$ intramolecular oxygen transfer in $\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{CO}\right]_{2} \mathrm{ZrR}_{2},{ }^{4}$ and olefin polymerization and $\mathrm{C}-\mathrm{H}$ activation by $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{LuR}$. ${ }^{5}$ In an alternate approach to this problem we began an investigation of cationic dicyclopentadienyl $\mathrm{Zr}(\mathrm{IV})$ complexes of the type $\mathrm{Cp}_{2} \mathrm{ZrR}^{+}$. Previously the 14-electron fragment $\mathrm{Cp}_{2} \mathrm{ZrCH}_{3}{ }^{+}$had been incorported in a variety of heterobimetallic compounds of both metal-metal bonded and isocarbonyl structures. ${ }^{6}$ As initial observations indicate that reactions involving both metal centers will play a major role in the chemistry of such bimetallic compounds, ${ }^{7}$ we sought simpler monometallic systems incorporating unreactive noncoordinating anions. ${ }^{8}$ We report here the preparation of $\mathrm{Cp}_{2} \mathrm{ZrR}^{+}$complexes via X^{-}or R^{-}

[^0]abstraction from $\mathrm{Zr}(\mathrm{IV})$ by Ag^{+}and several reactions which demonstrate the high electrophilicity of these complexes.

Reaction of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ with AgPF_{6} or of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{I}$ with TlPF_{6} in $\mathrm{CH}_{3} \mathrm{CN}$ followed by filtration and concentration of the filtrate produced $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{PF}_{6}\right]\left(1-\mathrm{PF}_{6}\right)$ in 75% yield as a pale yellow solid after vacuum drying (eq 1).

$$
\begin{aligned}
& \underset{\substack{\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{X}}}{\mathrm{X}=\mathrm{Cl}, \mathrm{M}=\mathrm{Ag}} \begin{array}{l}
\mathrm{M}\left[\mathrm{PF}_{6}\right] \xrightarrow{\mathrm{CH}_{3} \mathrm{CN}} \\
\mathrm{X}=\mathrm{I}, \mathrm{M}=\mathrm{Tl} \quad\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{PF}_{6}\right]+\mathrm{MX} \\
\\
\\
\mathbf{1}-\mathrm{PF}_{6}
\end{array}
\end{aligned}
$$

This compound was characterized spectroscopically; ${ }^{9}$ in particular a singlet in the ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum at $\delta 1.95$ integrating for 3 H and IR ν_{CN} bands at 2310 and $2283 \mathrm{~cm}^{-1}$ shifted from 2287 and $2251 \mathrm{~cm}^{-1}$ for free $\mathrm{CH}_{3} \mathrm{CN}$ indicate the presence of a coordinated $\mathrm{CH}_{3} \mathrm{CN}$ ligand. ${ }^{10}$ In $\mathrm{CD}_{3} \mathrm{CN}$ the ${ }^{1} \mathrm{H}$ NMR resonances for the Cp and $\mathrm{Zr}-\mathrm{CH}_{3}$ groups of $1-\mathrm{PF}_{6}$ appear at $\delta 6.11$ and 0.09 , values that are nearly identical with those observed for the heterobimetallic compounds $\mathrm{Cp}_{2} \mathrm{ZrCH}_{3}(\mu-\mathrm{OC}) \mathrm{M}(\mathrm{CO})_{2} \mathrm{Cp}$ (M $=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$) which exhibit substantial conductivity in this solvent. ${ }^{66}$

While stable as a solid, 1- PF_{6} decomposed instantaneously in THF and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{F}$ via F^{-}abstraction from $\mathrm{PF}_{6}{ }^{-}$ (eq 2). PF_{5} was not detected in this reaction but its formation

$$
\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{PF}_{6}\right] \xrightarrow[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{F}+\mathrm{PF}_{5} \rightarrow \mathrm{Cp}_{2} \mathrm{ZrF}_{2} \text { (2) }]{\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text { or } \\ \mathrm{THF}}}
$$

was implicated by the observed polymerization of the solvent in the THF experiment. $\mathrm{Cp}_{2} \mathrm{ZrF}_{2}$, presumably formed by $\mathrm{CH}_{3} / \mathrm{F}$ exchange between $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{F}$ and $\mathrm{PF}_{5},{ }^{11}$ was observed as a secondary reaction product. A similar but much slower (days) decomposition was observed in $\mathrm{CH}_{3} \mathrm{CN}$. ${ }^{12}$

Previously we had observed that while $\mathrm{CH}_{3} / \mathrm{F}$ exchange between $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{Cp}_{2} \mathrm{ZrF}_{2}$ was fast, phenyl/ F exchange between $\mathrm{Cp}_{2} \mathrm{ZrPh}_{2}$ and $\mathrm{Cp}_{2} \mathrm{ZrF}_{2}$ was extremely slow. ${ }^{.1}$ This suggested that use of $\mathrm{BPh}_{4}{ }^{-}$as a counterion might provide a more stable compound for study. $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{BPh}_{4}\right]\left(1-\mathrm{BPh}_{4}\right)$ was prepared most conveniently by reaction of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}$ with AgBPh_{4} in $\mathrm{CH}_{3} \mathrm{CN}$ followed by filtration, recrystallization from $\mathrm{CH}_{3} \mathrm{CN}$, and vacuum drying (yield 80%, eq 3). ${ }^{13}$ The ${ }^{1} \mathrm{H}$ and

$$
\underset{\underset{1}{\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{BPh}}+\mathrm{Ag}\left[\mathrm{BPh}_{4}\right] \xrightarrow{\mathrm{CH}_{3} \mathrm{CN}}}{\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]}\left[\mathrm{BPh}_{4}\right]+\mathrm{Ag}^{0}+\mathrm{C}_{2} \mathrm{H}_{6}
$$

${ }^{13} \mathrm{C}$ NMR and IR spectra of $1-\mathrm{BPh}_{4}$ are nearly identical with those of 1-PF ${ }_{6}$ except for characteristic BPh_{4}^{-}absorbances. ${ }^{14}$ The other products of this reaction, Ag^{0} and ethane (which was identified by its characteristic ${ }^{1} \mathrm{H}$ NMR signal at $\delta 0.86$ but was not quantified), are those expected from the thermal decomposition of AgCH_{3}, a possible intermediate in this reaction. ${ }^{15}$ In contrast to its $\mathrm{PF}_{6}{ }^{-}$analogue, $\mathbf{1}-\mathrm{BPh}_{4}$ is stable in THF solution. In this

[^1]solvent coordinated $\mathrm{CH}_{3} \mathrm{CN}$ was displaced yielding the THF adduct $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)(\mathrm{THF})\right]\left[\mathrm{BPh}_{4}\right]\left(\mathbf{2}-\mathrm{BPh}_{4}\right)$ which was isolated as a pale yellow crystalline solid. ${ }^{16} \quad \mathbf{1}-\mathrm{BPh}_{4}$ also formed stable complexes with the hard unhindered Lewis bases $4,4^{\prime}$-dimethylbipyridine and 4 -(dimethylamino)pyridine in $\mathrm{CH}_{3} \mathrm{CN}$ but not with PPh_{3} or diphos. ${ }^{17}$

As expected for $\mathrm{Cp}_{2} \mathrm{Zr}^{1 \mathrm{~V}}$ complexes lacking π donor ligands, ${ }^{18}$ 1 and 2 reacted rapidly with CO in $\mathrm{CH}_{3} \mathrm{CN}$ to produce (in the BPh_{4}^{-}cases) $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{COCH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{BPh}_{4}\right]\left(3-\mathrm{BPh}_{4}\right)$ isolated (70%) as a yellow solid. ${ }^{19}$ Unlike neutral $\mathrm{Cp}_{2} \mathrm{Zr}^{1 \mathrm{~V}}$ acyl complexes, 3- BPh_{4} and its THF and $\mathrm{PF}_{6}{ }^{-}$analogues did not release CO under vacuum. ${ }^{20}$ Also, unlike neutral $\mathrm{Cp}_{2} \mathrm{Zr}^{1 \mathrm{~V}}$ alkyl complexes, ${ }^{21,22}$ the cationic zirconium alkyls $\mathbf{1}$ and $\mathbf{2}$ add rapidly to ketones under mild conditions. For example, $1-\mathrm{BPh}_{4}$ reacted with benzophenone at room temperature in THF (ca. 1 h) to produce $\left[\mathrm{Cp}_{2} \mathrm{Zr}\right.$ $\left.\left(\mathrm{OCPh}_{2} \mathrm{CH}_{3}\right)(\mathrm{THF})\right]\left[\mathrm{BPh}_{4}\right]$ (4) $\left(100 \%\right.$ by ${ }^{1} \mathrm{H}$ NMR $) .{ }^{23}$ When this reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, transient signals ($\delta 6.22(\mathrm{~s}, 10 \mathrm{H}), 0.47(\mathrm{~s}, 3 \mathrm{H})$) presumably due to an intermediate adduct $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{OCPh}_{2}\right)\right]\left[\mathrm{BPh}_{4}\right]$ were observed. In contrast, $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}$ reacted only extremely slowly with benzophenone (30% complete after $70 \mathrm{~h}, 110^{\circ} \mathrm{C}$, sealed tube) to produce $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{OCPh}_{2} \mathrm{CH}_{3}\right)$.

The observed F^{-}abstraction from $\mathrm{PF}_{6}{ }^{-}$, the selectivity for adduct formation with Lewis bases, and the reactivity with CO and carbonyl compounds characterize the fragment $\mathrm{Cp}_{2} \mathrm{ZrCH}_{3}{ }^{+}$as a highly electrophilic hard Lewis acid. We are currently exploring the reactivity of $\mathbf{1 - 3}$, and other cationic $\mathrm{Cp}_{2} \mathrm{Zr}^{1 \mathrm{~V}}$ complexes, with olefins, acetylenes, and other substrates. ${ }^{24}$

Acknowledgment. Support from the Research Corporation, the donors of the Petroleum Research Fund, administered by the

[^2]American Chemical Society, and the Washington State University Research and Arts Committee is gratefully acknowledged.

Registry No. 1-PF ${ }_{6}, 100909-46-4 ; 1-\mathrm{BPh}_{4}, 100909-48-6 ; 2-\mathrm{BPh}_{4}$, $100909-50-0 ; 3-\mathrm{BPh}_{4}, 100909-54-4 ; 4,100909-56-6 ; \mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$, 1291-45-8; $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{I}, 63643-49-2 ; \mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{F}, 100909-47-5$; $\mathrm{Cp}_{2} \mathrm{ZrF}_{2}$. $11090-85-0 ; \mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}$, $12636-72-5 ; \mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)$ $\left(\mathrm{OCPh}_{2} \mathrm{CH}_{3}\right)$, 100909-57-7; $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(4,4^{\prime}\right.\right.$-dimethylbipyridine $\left.)\right]$ $\left[\mathrm{BPh}_{4}\right]$, 100909-52-2; benzophenone, 119-61-9.

Deuterium Fractionation Factor for the Gas-Phase Hydronium Ion

J. W. Larson and T. B. McMahon*

Department of Chemistry, University of Waterloo
Waterloo, Ontario, Canada N2L $3 G 1$
Received July 12, 1985
The hydronium ion, $\mathrm{L}_{3} \mathrm{O}^{+}$where $\mathrm{L}=\mathrm{D}$ or H , plays a central role in the interpretation of isotope effects in aqueous solutions. Several workers ${ }^{1-5}$ have measured the isotope effect for the hydronium ion in deuterated aqueous solutions which may be expressed in terms of the equilibrium constant for reaction $1, K_{1}$

$$
\begin{equation*}
2 \mathrm{H}_{3} \mathrm{O}^{+}(1)+3 \mathrm{D}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 3 \mathrm{H}_{2} \mathrm{O}(1)+2 \mathrm{D}_{3} \mathrm{O}^{+}(1) \tag{1}
\end{equation*}
$$

$=0.11$. More commonly, however, the isotope effect is reported in terms of a fractionation factor, ${ }^{6,7} \phi_{1}$, that expresses, on a per hydrogen basis with statistical effects removed, the effect of the change in environment in proceeding from bulk solvent to solvated solute. The fractionation factor for the hydronium ion is equal to $\left(K_{1}\right)^{1 / 6}$ and has a value of 0.69 ± 0.02. This value indicates that, relative to water protium is accumulating in the hydronium ion and therefore the force field for $\mathrm{O}-\mathrm{H}$ bonds in the hydronium ion is weaker than in water. Both the positive charge and the hydrogen bonding of the hydronium ion to solvent water, as indicated in the formula $\mathrm{O}\left(\mathrm{L}-\mathrm{LO}_{2}\right)_{3}{ }^{+}$, could contribute to this weakening of the proton bond. ${ }^{7-9}$ Recently, Kurz et al. ${ }^{10}$ have investigated the relative importance of these two factors by measuring the fractionation factor of hydronium ion in acetonitrile. They obtained a fractionation factor of 0.79 for this unhydrated hydronium ion and concluded that either hydrogen bonding is of secondary importance in influencing the fractionation factor or that the hydrogen bonding from $\mathrm{L}_{3} \mathrm{O}^{+}$to NCCH_{3} is almost as effective in weakening the force field as is the hydrogen bonding in the aqueous system. The value of the fractionation factor for the completely unsolvated, gaseous hydronium ion should provide considerable insight into this question. The statistical mechanical calculations of Henchman, Smith, and Adams ${ }^{11}$ contain estimates that lead to a fractionation factor for gaseous $\mathrm{L}_{3} \mathrm{O}^{+}$with a large uncertainty. In the present paper we report the first accurate experimental determination of the fractionation factor for the hydronium ion in the gas phase

A mixture of $\mathrm{H}_{2} \mathrm{O}(1)$ and $\mathrm{D}_{2} \mathrm{O}(1)$ was made up by weight and placed in a large glass bulb. The partial pressures of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$,
(1) Salomaa, P.; Aalto, V. Acta Chem. Scand. 1966, 20, 2035.
(2) Laughton, P. M.; Robertson, R. E. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; p 423.
(3) Purlee, E. L. J. Am. Chem. Soc. 1959, 81, 263
(4) Kresge, A. J.; Allred, A. L. J. Am. Chem. Soc. 1963, 85, 1941.
(5) Gold, V. Proc. Chem. Soc., London 1963, 141.
(6) Kreevoy, M. M. In Isotope Effects in Organic Chemistry; Buncel, E., Lee, C. C., Eds.; Elsevier: Amsterdam; Vol. 2, 1979.
(7) Schowen, R. L. In Isotope Effects on Enzyme-Catalyzed Reactions; Cleland, W. W., O'Leary, M. H., Northrop, D. B., Eds.; University Park Press: Baltimore, 1977; p 64
(8) More O'Ferrall, R. A.; Koeppl, G. W.; Kresge, A. J. J. Am. Chem. Soc. 1971, 93, I.
(9) Swain, C. G.; Bader, R. F. W. Tetrahedron 1960, 10, 182.
(10) Kurz, J. L.; Myers, M. T.; Ratcliff, K. M. J. Am. Chem. Soc. 1984, 106, 5631 .
(11) Henchman, M. J.; Smith, D.; Adams, N. G. Int. J. Mass Spectrosc. Ion Phys. 1982, 42, 25.

[^0]: ${ }^{+}$Visiting summer fellow from University of Puget Sound, Tacoma, WA.
 (1) For leading references, see: (a) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 19, 121. (b) Barger, P. T.; Santarsiero, B. D.; Armantrout, J.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5178 . (c) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333. (d) Erker, G. Acc. Chem. Res. 1984, 17, 103. Negishi, E. Aldrichimica Acta 1985, 18, 31. (f) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611. (g) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729. (h) Tatsumi, K.; Nakamura, A.; Hofmann, P.; Stauffert, P.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 4440. (i) See also: Marks, T. J.; Ernst, R. D. In "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Chapter 21.
 (2) (a) Weidmann, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1983, 22, 31. (b) Reetz, M. T. Top. Curr. Chem. 1983, 106, I.
 (3) Blenkers, J.; de Liefde Meijer, H.; Teuben, J. H. Organometallics 1983, 2, 1483.
 (4) Lubben, T. V.; Wolczanski, P. T. J. Am. Chem. Soc. 1985, 107, 701.
 (5) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51.
 (6) For leading references, see: (a) Casey, C. P.; Jordan, R. F.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 105, 665. (b) Longato, B.; Martin, B. D.; Norton, J. R.; Anderson, O. P. Inorg. Chem. 1985, 24, 1389.
 (7) (a) Marsella, J. A.; Huffman, J. C.; Caulton, K. G.; Longato, B.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 6360. (b) Casey, C. P.: Palermo, R. E.; Jordan, R. F.; Rheingold, A. L. J. Am. Chem. Soc. 1985, 107, 4597.
 (8) Several cationic $\mathrm{Cp}_{2} \mathrm{M}$ ($\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}$) complexes have been reported. (a) $\left[\left\{\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2} \mathrm{O}\right]\left[\mathrm{S}_{2} \mathrm{O}_{6}\right]$: Thewalt, U.; Schleussner, G. Angew. Chem., Int. Ed. Engl. 1978, 17, 531. (b) $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}\right.$: Thewalt, U.; Klein, H.-P. J. Organomet. Chem. 1980, 194, 297. (c) $\left[\left\{\mathrm{CP} \mathrm{C}_{2} \mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2} \mathrm{O}\right]\left[\mathrm{ClO}_{4}\right]_{2}$, Thewalt, U.; Kebbel, B. J. Organomet. Chem. 1978, 150 , 59 . (d) $\left[\mathrm{Cp}_{2} \mathrm{ZrCH}_{2} \mathrm{CH}\left(\mathrm{AlEt}_{2}\right)_{2}\right]$ [Cp]: Kaminsky, W.; Kopf, J.; Sinn, H.; Vollmer, J. Angew. Chem., Int. Ed. Engl. 1976, 15, 629. (e) $\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$: Bruce, M. R. M.; Tyler, D. R. Organometalics 1985, 4, 528.

[^1]: (9) 1-PF ${ }_{6}{ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 6.11(\mathrm{~s}, 10 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{ZrCH}_{3}\right) ;{ }^{6}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 112.6,28.0\left(\mathrm{~J}_{13} \mathrm{C}-{ }^{1} \mathrm{H}=121 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-143.4\left(\right.$ septet, $\left.J_{31 \mathrm{p} .19 \mathrm{~F}}=707 \mathrm{~Hz}\right) ; 1 \mathrm{R}(\mathrm{KBr}) \nu_{\mathrm{CN}} 2310$, $2283 \mathrm{~cm}^{-1}, \nu_{\mathrm{PF}_{5}-} 835,561 \mathrm{~cm}^{-1}$.
 (10) For a discussion of the 1 R spectrum of $\mathrm{CH}_{3} \mathrm{CN}$ see footnote 11 in ref 8 e.
 (11) Jordan, R. F. J. Organomet. Chem. 1985, 294, 321.
 (12) (a) $1-\mathrm{BF}_{4}$, prepared from $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, decomposes similarly. (b) For a review of F^{-}transfer reactions, see: Reedijk, J. Comments Inorg. Chem. 1982, 24, 379.
 (13) This reaction was suggested by the observation of minor amounts of ethane product in the reaction of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right) \mathrm{Cl}$ with AgNO_{3}. Jordan, R . F., unpublished work.
 (14) 1-BPh ${ }^{\prime} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.4-6.7\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{BPh}_{4}^{-}\right) 6.07(\mathrm{~s}, 10$ H), $1.95\left(\mathrm{~s}, 3 \mathrm{H}\right.$), $0.079\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ZrCH}_{3}\right)$; ${ }^{11} \mathrm{~B}$ NMR (THF) $\delta-6.31 \mathrm{~s} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 165\left(\mathrm{q}, J_{13} \mathrm{C}-11_{\mathrm{B}}=50 \mathrm{~Hz}\right), 136.6,126.4,122.6,112.1$ $\left(\mathrm{Cp}_{2} \mathrm{Zr}\right), 30.8\left(\mathrm{ZrCH}_{3}\right)$; 1 q ($(\mathrm{KBr}) \nu_{\mathrm{CN}} 2303,2273 \mathrm{~cm}^{-1}$
 (15) (a) Beverwijk, C. D. M.; van der Kerk, G. J. M.; Leusink, A. G.; Noltes, J. G. Organometallic Chem. Rev. Sect., A. 1970, 5, 215. (b) Experiments designed to probe the mechanism of this reaction are under way. (c) Reaction of boron alkyls with Ag^{+}also gives alkyl coupling products. Brown, H. C.; Snyder, C. H. J. Am. Chem. Soc. 1961, 83, 1002.

[^2]: (16) 2- $\mathrm{BPh}_{4}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.6-6.7\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{BPh}_{4}{ }^{-}\right) 6.31(\mathrm{~s}, 10$ $\mathrm{H}), 3.44(\mathrm{~m}, 4 \mathrm{H}$, THF), $1.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{THF}), 0.74(\mathrm{~s}, 3 \mathrm{H})$. The absorbances due to coordinated THF are shifted 0.23 and 0.01δ upfield from those of free THF (3.67, 1.81) in this solvent. Anal. Calcd: $\mathrm{C}, 74.62 ; \mathrm{H}, 6.58, \mathrm{Zr}, 14.53$ Found: C. 74.51, H, 6.63, Zr, 14.52.
 (17) $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(4,4^{\prime}\right.\right.$-dimethylbipyridine) $]\left[\mathrm{BPh}_{4}\right]$: Isolated as the toluene solvate by recrystallization from $\mathrm{CH}_{3} \mathrm{CN} /$ toluene. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{BZr}: \mathrm{C}, 77.95 ; \mathrm{H}, 6.42 ; \mathrm{N}, 3.37$. Found C, $77.75 ; \mathrm{H}, 6.34 ; \mathrm{N}, 3.56$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.70(\mathrm{~d}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, 6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, \mathrm{br}$ $2 \mathrm{H}), 7.54(\mathrm{~d}, 7 \mathrm{~Hz}, \mathrm{IH}), 7.4-6.6\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{BPh}_{4}{ }^{-}\right.$and bpy) $5.93(\mathrm{~s}, 10 \mathrm{H})$ 2.56 (s, 3 H), 2.51 (s, 3 H), 0.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ZrCH}_{3}$) ${ }^{13} \mathrm{C}{ }^{1} \mathrm{H} \mid$ NMR (THF- d_{8}) $\delta 165\left(\mathrm{q}, J_{13} \mathrm{c}_{-} 1_{\mathrm{B}}=49.5 \mathrm{~Hz}\right), 156.0,155.1,154.4,152.9,152.8,152.0,137.0$ 128.0, 125.9, 122.0, 112.4, ($\left.\mathrm{Cp}_{2} \mathrm{Zr}\right), 35.9\left(\mathrm{ZrCH}_{3}, J_{13{ }_{\mathrm{C}}^{-1} \mathrm{H}}=121 \mathrm{~Hz}\right.$ from gated decoupled spectrum), 21.7 .
 (18) (a) Marsella, J. A.; Moloy, K. G.; Caulton, K. G. J. Organomet. Chem. 1980, 201, 389. (b) Gell, K. I.; Posin, B.; Schwartz, J.; Williams, G M. J. Am. Chem. Soc. 1982, 104,1846
 (19) 3- $\mathrm{BPh}_{4}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.4-6.7\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{BPh}_{4}{ }^{-}\right) 6.00(\mathrm{~s}, 10$ H), $\left.3.06(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 315.0\left(\mathrm{ZrCOCH}_{3}\right)$, $164.6\left(\mathrm{q},{ }^{J_{13}{ }_{\mathrm{C}}-1 \mathrm{II}_{\mathrm{B}}}=49.5 \mathrm{~Hz}\right), 136.6,126.5,122.6,110.6\left(\mathrm{Cp}_{2} \mathrm{Zr}\right), 33.8\left(\mathrm{CH}_{3}\right)$; IR $\nu_{\mathrm{CN}} 2304,2276 \mathrm{~cm}^{-1}, \nu_{\mathrm{CO}} 1563 \mathrm{~cm}^{-1}$. Anal. Calcd: C, $73.06 ; \mathrm{H}, 5.81$; N, 2.24; B, 1.73; Zr, 14.60. Found: C, 72.78 ; H, 5.98 ; N, 2.49 ; B, $1.90 ; \mathbf{Z r}$, 14.36 .
 (20) Fachinetti, G.; Fochi, G.; Floriani, C. J. Chem. Soc., Dalton Trans. 1977, 1946.
 (21) $\mathrm{Cp}_{2} \mathrm{ZrR}_{2}$ and $\mathrm{Cp}_{2} \mathrm{ZrRX}$ complexes are reported to be unreactive with ketones. ${ }^{1 \text { e.2 }}$ However, $\mathrm{Cp}_{2} \mathrm{Zr}^{1 \mathrm{~V}}$ allyl and enolate complexes react with a variety of carbonyl substrates ${ }^{22}$ as do $\mathrm{R}_{n} \mathrm{MX}_{4-n}(\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}){ }^{2}$
 (22) (a) Reetz, M. T.; Kyung, S. H.; Westermann, J. Organometallics 1984, 3. 1716. (b) Yasuda, H.; Nagasuna, K.; Akita, M.; Lee, K.; Nakamura, A. Organometallics 1984, 3, 1470. (c) Yamamoto, Y.; Maruyama, K. Tetrahedron Lett. 1981, 22, 2895. (d) Evans, D. A.; McGee, L. R. J. Am. Chem Soc. 1981, 103, 2876. (e) Yamamoto, Y.; Maruyama, K. Tetrahedron Lett 1980, 21, 4607.
 (23) 4: 'H NMR ($\mathrm{CD}_{3} \mathrm{CN}$) $87.5-6.7(\mathrm{~m}, 30 \mathrm{H}), 6.32(\mathrm{~s}, 10 \mathrm{H}), 3.65(\mathrm{~m}$, $4 \mathrm{H}), 1.95\left(\mathrm{OCCH}_{3}\right.$, masked by solvent peak), $1.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (THF- d_{8}) $\delta 7.5-6.7(\mathrm{~m}, 30 \mathrm{H}), 6.28(\mathrm{~s}, 10 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 164\left(\mathrm{q}, J_{13} \mathrm{C}_{\mathrm{C}} \mathrm{II}_{\mathrm{B}}=50 \mathrm{~Hz}\right), 148.5,136.4,128.8,127.7,126.3,122.4$, $115.4,88.4\left(\mathrm{ZrOCPh}_{2} \mathrm{CH}_{3}\right), 68.1$ (THF), 31.5, 26.1 (THF).
 (24) Eisch and co-workers recently reported evidence implicating $\mathrm{Cp}_{2} \mathrm{TiCH}_{3}{ }^{+}$as the active species in the $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / \mathrm{CH}_{3} \mathrm{AlCl}_{2}$ Ziegler-Natta ethylene polymerization model system. Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219
 (25) In this paper the periodic group notation in parentheses is in accord with recent reactions by IUPAC and ACS nomenclature committees. A and B notation is eliminated because of wide confusion. Groups IA and 11A become groups 1 and 2 . The d-transition elements comprise groups 3 through 12 , and the p-block elements comprise groups 13 through 18. (Note that the former Roman number designation is preserved in the last digit of the new numbering: e.g., $111 \rightarrow 3$ and 13.)

